课题组获国自然面上项目资助-自旋波和表面等离激元的耦合特性研究

课题组关于自旋波和表面等离激元耦合特性研究的计划书近日获得国家自然科学基金委面上项目的资助,这为课题组持续开拓自旋电子学、纳米光子学、低维物理等领域的交叉研究提供了经费支持。

 

项目题目:自旋波和表面等离激元耦合特性研究

项目执行期:2026.1-2029.12

项目摘要:电荷和自旋是电子的两个基本属性,其集体激发在低维体系中展现出独特的物理特性。其中,电荷的集体激发产生表面等离激元,可以在亚波长尺度实现电磁场的局域增强;自旋的集体激发形成自旋波,其量子化对应的磁子具有优异的信息承载和传递能力。尽管这两类准粒子的研究已分别在纳米光子学和自旋电子学领域取得重要进展,但二者相互作用机制和协同研究仍处于空白状态。本项目拟开展自旋电子学、低维物理和纳米光子学交叉领域的理论研究。申请人拟聚焦磁体/低维导电材料复合系统,建立自旋波和表面等离激元相互作用的完备理论:在经典层面,揭示自旋波和表面等离激元的强耦合特性,解析表面等离激元对磁子自旋流的调控机理;在量子层面,阐明复合系统中磁子和表面等离激元量子态的产生、调控和探测及其在量子信息中的应用。本项目的实施将拓展传统纳米光子学和磁子自旋电子学的研究范畴,为构建混合量子系统和设计新型的磁学器件奠定物理基础。

 

Abstract

Charge and spin are the two fundamental properties of electrons, and the collective excitations of charge and spin have unique properties in low-dimensional physicalsystems. The collective electron charge excitations are surface plasmons, which can localize and enhance the electromagnetic field in the sub-wavelength space. The collective spin excitations are spin waves and the quantization of spin waves so-called magnons can carry and transport information. Although significant progress has been made in magnon spintronics and plasmonic photonics, the interplay of spin waves and plasmons remains largely to be explored.

 

Our current project will explore the new physics in low-dimensional material/magnet hybrid structures and intends to develop an interdisciplinary field combining spintronics, low-dimensional physics, and plasmonics. In particular, we will focus on the composite system of magnets/low dimensional conductive material to develop a comprehensive theoretical framework of the interaction between spin waves and surface plasmons. At the classical level, we intend to reveal the strong coupling between spin waves and surface plasmons and elucidate the mechanism by which surface plasmons can manipulate magnon spin currents. At the quantum level, we will uncover the generation, manipulation, and detection of quantum states of magnons and surface plasmons in the composite system, as well as their potential applications in quantum information science.

 

Our project will not only extend the horizon of traditional plasmonics and spintronics but also provide new ideas for constructing hybrid quantum systems for information processing. Understanding magnon-plasmon coupling will further benefit the design of multi-functional spintronic and plasmonic devices.

创建时间:2025-09-01 08:26

文章详情